9. FunctionsΒΆ
Syntax
FunctionDeclaration
::=FunctionQualifierList
fnName
GenericParameterList
? (FunctionParameterList
? )ReturnType
?WhereClause
? (FunctionBody
| ;)FunctionQualifierList
::= const? async?ItemSafety
?AbiSpecification
?FunctionParameterList
::= (FunctionParameter
(,FunctionParameter
)* ,?) | (SelfParameter
(,FunctionParameter
)* ,?)FunctionParameter
::=OuterAttributeOrDoc
* (FunctionParameterPattern
|FunctionParameterVariadicPart
|TypeSpecification
)FunctionParameterPattern
::=PatternWithoutAlternation
(TypeAscription
| (:FunctionParameterVariadicPart
))FunctionParameterVariadicPart
::= ...ReturnType
::= ->TypeSpecification
FunctionBody
::=BlockExpression
SelfParameter
::=OuterAttributeOrDoc
* (ShorthandSelf
|TypedSelf
)ShorthandSelf
::= (&LifetimeIndication
?)? mut? selfTypedSelf
::= mut? selfTypeAscription
Legality Rules
9:1 A function is a value of a function type that models a behavior.
9:2 A function declares a unique function item type for itself.
9:3 A function qualifier is a construct that determines the role of a function.
9:4
A function shall not be subject to both keyword async
and
keyword const
.
9:5 A function parameter is a construct that yields a set of bindings that bind matched input values to names at the site of a call expression or a method call expression.
9:6
A self parameter is a function parameter expressed by keyword
self
.
9:7 A function shall not specify a self parameter unless it is an associated function.
9:8 The type of a function parameter is determined as follows:
9:9 If the function parameter is a self parameter without a
TypeSpecification
:9:10 And the self parameter has token
&
and keywordmut
, then the type is&mut Self
.9:11 And the self parameter has token
&
and lacks keywordmut
, then the type is&Self
.9:12 And the self parameter lacks token
&
and keywordmut
, then the type isSelf
.
9:14 The pattern of a function parameter shall be an irrefutable pattern.
9:15 The expected type of the pattern of a function parameter is the type of the function parameter.
9:16 The bindings of all patterns of all function parameters of a function shall not shadow another.
9:17
A function shall not specify a FunctionParameterVariadicPart
unless
it is an external function.
9:18 A return type is the type of the result a function, closure type or function pointer type returns.
9:19 The return type of a function is determined as follows:
9:20 If the
FunctionDeclaration
specifies aReturnType
, then the return type is the specifiedReturnType
.9:21 Otherwise the return type is the unit type.
9:22 A function body is the block expression of a function.
9:23 A function shall have a function body unless it is an associated trait function or an external function.
9:24 A function body denotes a control flow boundary.
9:25 A function body of an async function denotes an async control flow boundary.
9:26 A function signature is a unique identification of a function that encompasses of its function qualifiers, name, generic parameters, function parameters, return type, and where clause.
9:27
A constant function is a function subject to keyword const
.
9:28 The function body of a constant function shall be a constant expression.
9:29 A constant function shall be callable from a constant context.
9:30
An async function is a function subject to keyword async
. An
async function of the form
async fn async_fn(param: ¶m_type) -> return_type {
/* tail expression */
}
9:31 is equivalent to function
fn async_fn<'a>(param: &'a param_type) -> impl Future<Output = return_type> + 'a {
async move {
/* tail expression */
}
}
9:32
An unsafe function is a function subject to an ItemSafety
with keyword unsafe
.
9:33
A function shall only be subject to an ItemSafety
with keyword safe
if it is an external function in an unsafe external block.
9:34 The invocation of an unsafe function shall require unsafe context.
Examples
fn eucledian_distance(left: &Point, right: &Point) -> f64 {
let x_delta_squared: f64 = (right.x - left.x).powi(2);
let y_delta_squared: f64 = (right.y - left.y).powi(2);
(x_delta_squared + y_delta_squared).sqrt()
}
fn main() {}